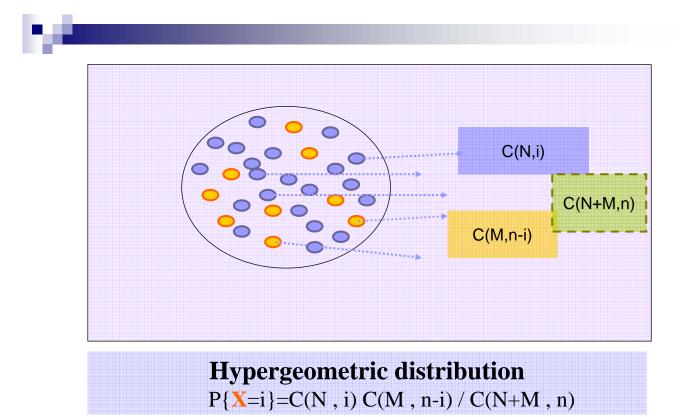
Lecture 5 (Addendum): More distributions

Objectives: to learn the following distributions and functions:

- Hypergeometric distribution
- Uniform distribution
- Multinomial distribution
- Exponential and gamma distributions
- Moment generating function (mgf)
- Chi-square, t-, and F- distributions



Expectation of **X**~HPG(N,M,n)

• $EX = \sum \{x C(N, x) C(M, n-x) / C(N+M, n)\}$ = $\sum \{N C(N-1, x) C(M, n-x) / [((N+M)/n) C(N-1+M, n-1)]\}$ = n N/(N+M)

Alternative approach: I_i=1 if the i-th sample is 'orange'; and I_i=0 if the i-th sample is 'blue'=> P{I_i=1}=N/(N+M)=E{I_i}.

 $\blacksquare \mathbf{X} = \sum I_i = E \mathbf{X} = \sum E\{I_i\} = n N/(N+M)$

Variance of **X**~HPG(N,M,n)

Moreover, say i≠j, P{I_i=1, I_j=1}= P{I_i=1}* P{I_j=1|I_i=1} =N/(N+M)* (N-1)/(N-1+M)
Var(X)= ∑ Var(I_i)+2 ∑_{i≠j} cov(I_i, I_j) -- Var(I_i)=P(I_i=1)*{1- P(I_i=1)}=N/(N+M)* M/(N+M) because I_i is a Bernoulli rv.
-- cov(I_i, I_j)=E(I_i I_j)- E(I_i) E(I_j) and E(I_i I_j)=P{I_i I_j=1}=P{I_i=1, I_j=1} -- Combining all these results gives Var(X)=NMn(N+M-n)/{(N+M)²(N+M-1)}

The Multinomial Distribution

Probability mass function (pmf): ($\Sigma p_i = 1$) $\frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}$

P₁

 P_2

Pk

•
$$E(\mathbf{X}_i) = nPi$$
,

•
$$Var(\mathbf{X}_i) = np_i(1-p_i)$$

• $Cov(\mathbf{X}_i, \mathbf{X}_j) = -np_ip_j \ (i \neq j)$

Example: Virus or bacteria evolution (exercise)

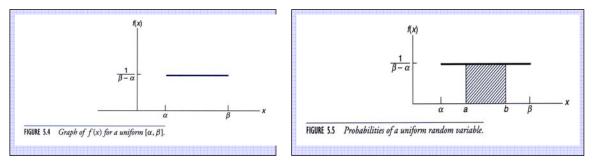
A virus consists of a sequence of DNA. It may have different sub-types. A sample of size N of this virus is supposed to have k different sub-types with observed sample sizes: n₁, n₂,...,n_k; with ∑ n_i = N. The quantity C defined as

$C= \sum n_{i} (n_i - 1) / N(N-1),$

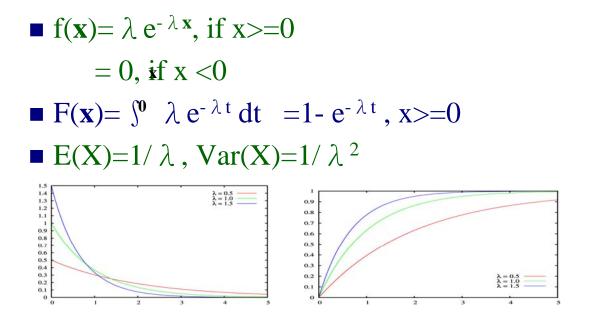
is used as a measure for balanced dispersion on subtypes. Please find the variance of the statistic C. [This is problem raised by Professor CC Chang of NCHU]

The uniform distribution

- $f(\mathbf{x})=1/(\beta \alpha)$ if $\alpha \leq \mathbf{x} \leq \beta$, where β and α are the two parameters. You can easily check that $f(\mathbf{x})$ is integrated to 1 for $\mathbf{x}=\alpha$ to $\mathbf{x}=\beta$.
- X~Unif(α , β); => E(X)=(α + β)/2, Var(X)=(β - α)²/12



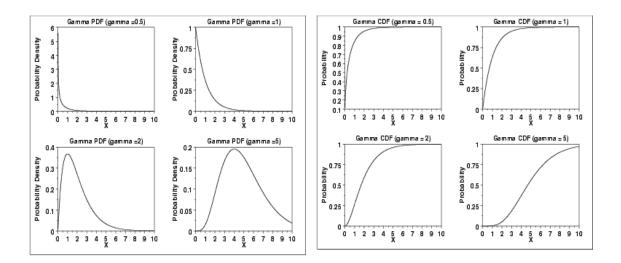
Exponential distribution



Gamma distribution

- $f(\mathbf{x}) = \lambda^{\alpha} \mathbf{x}^{\alpha 1} e^{-\lambda \mathbf{x}} / \Gamma(\alpha)$, denoted as $\Gamma(\mathbf{x}; \alpha, \lambda)$ where $\Gamma(\alpha)$ is a gamma function, $\Gamma(\alpha) = \int_{-\infty}^{\infty} \mathbf{x}^{\alpha - 1} e^{-\mathbf{x}} d\mathbf{x}$
- α is called the shape parameter and λ the scale parameter.
- F(x) is a direct integral of f(x), involves the incomplete gamma function. (Exercise !)
- $E(X) = \alpha / \lambda$, $Var(X) = \alpha / \lambda^2$
- Note: exponential distribution can be viewed as a special case of gamma distribution when $\alpha = 1$.

Gamma's pdf and cdf



The moment generating function (mgf)

φ(t)=E(e^{tX})= ∫ e^{tx}f(x)dx, which is a function of t.
It is easy to show that: φ(0)=1; φ'(0)=E(X); φ''(0)=E(X²); φ^(k)(0)=E(X^k)
Example 1: Gaussian (Textbook, p.169) X ~N(μ, σ²), E(e^{tX})=exp{ μt+σ²t²/2}=φ(t) => φ(0)=1; φ'(0)=μ; φ''(0)=μ²+σ²; ... Var(X)= E(X²)- (EX)²=σ²

The moment generating function (*cont*.)

• Example 2: Gamma: $\mathbf{X} \sim \Gamma (\mathbf{x}; \alpha, \lambda)$, the mgf ϕ (t)=[$\lambda / (\lambda - t)$] $^{\alpha}$; ϕ '(t)= $\alpha \lambda^{\alpha}/(\lambda - t)^{\alpha+1}$; ϕ ''(t)= $\alpha (\alpha + 1) \lambda^{\alpha}/(\lambda - t)^{\alpha+2}$; E(\mathbf{X})= α / λ ; E(\mathbf{x}^2)= $\alpha (\alpha + 1) / \lambda^2$; Var(\mathbf{X})= E(\mathbf{x}^2)- (E \mathbf{x}) $^2 = \alpha / \lambda^2$

• • • • • •

Homework and exercises

- Do the homework mentioned in the context of the lecture handout.
- Read sections 5.6.1 and and 5.9 to learn something about Poisson process and logistic distribution.
- Do the problems in your textbook (pages 194~200): Level 1: 8, 9, 16, 17, 21, 30, 34, 37, 44, 47 Level 2: 19, 20, 29

Homework and exercises (cont.)

- Show that, if $X_1 \sim \Gamma(\alpha_1, \lambda)$ and $X_2 \sim \Gamma(\alpha_2, \lambda)$; then the random variable $Y = X_1 + X_2 \sim \Gamma(\alpha_1 + \alpha_2, \lambda)$.
- For a gamma function, it is easy to show:
 - (1) $\Gamma(\alpha) = (\alpha 1) \Gamma(\alpha 1)$; and
 - (2) Γ (n)=(n-1)! for an integer value "n".
 - (3) Moreover, $\Gamma(1/2) = \sqrt{\pi}$